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IDENTIFYING AN UNKNOWN STATIC PROCESS HAVING UNIFORMLY
DISTRIBUTED OBSERVATIONAL ERRORS

1. INTRODUCTION

The black box identification problem is that of determining, on the basis of a finite
amount of experimental input-output data, an adequate model of the unknown process
(the black box). The principal elements of this problem are a space of candidate models,
the spaces of admissible inputs and possible outputs, and a criterion for adequate model-
ing, Zadeh [1,2]. Identification problems can be grouped according to whether the
space of c landidate mrodels is P Lo f;,,;i-f AH nnonal1

In the last decade extensive research has been conducted on the finite case, and many
remarkable results have been achieved. For instance, process parameter estimation and
state estimation fall into this group. Thev deal with estimating a finite number of un-
known scalar quantities of a physical process. In such problems the space of candidate
models is representable as a subset of a finite-dimensional Euclidean space. The literature
contains a number of excellent survey articles on methods for resolving these problems.
For example, Eykhoff, Van der Grinten, Kwakernaak, and Veltman [3] discuss a number
of techniques proposed for parameter estimation and cite some examples of industrial
models. Eykhoff [4] summarizes some important properties of the parameter-estimation
problem and gives a brief discussion on process state estimation. Cuenod and Sage [5]
present a survey of some of the computational problems and procedures of process-
parameter identification. Balakrishnan and Peterka [61 compare the principal ideas of
different approaches to the identification problem. Astrbm and Eykhoff [7] give an over-
view of the field of identification as it relates to control-engineering applications. The
articles in Eykhoff [8] cover applications in aeronautics, biology, chemistry, economics,
engineering and physics. The text of Eykhoff [91 gives an excellent account of the theory
of parameter estimation.

Only a modicum of results has been discovered for identification problems in which
the space of candidate models is infinite dimensional In such problems less knowledge
about the process is assumed to be known a priori. That is, it is not assumed that the
process evolves according to a linear or quadratic law or that the process has a known
finite number of unknown quantities. Rather, loosely speaking, the black box is less
transparent thain in the fniue case. (From the viewpoint of a priori knowledge, it is more
appropriate to speak of unknown processes as gray boxes varying in shades rather than
as black boxes. Nevertheless, it is conventional to refer to all unknown processes as black
boxes.) In the finite case a finite amount of input-output data is sufficient for the pur-
n~w se ofc nt + An+n -_.4-t-.11- 4-t- 4A 44 ... t k.- .1 - r 'T-L. -_ __..,a z,...0...
pOse of c VAUtrut1in uGtciLiuhitotitalidiy tdIC iUfLL1 ia Ulack UboA. this ls notU true fUr

the infinite case. For example, necessary and sufficient conditions are given by Stalford
and Leitmann [10] for representing a black box as a dynamical system governed by ordi-
nary differential equations. Those conditions cannot be verified by a finite amount of
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HAROLD L. STALFORD

input-output data. The publication by Gold [11] is an investigation on identifying a black
box in the limit (e., expernimenting on the black box indefinitely). The limiting method
provides no means of establishing that a constructed model is the identity even though
the correct model actually may be obtained after finite experimentation. Although a
black box belonging to the infinite ease cannot be identified deterministically with finite
ULLUaO , I WeI ' LCh a tn MIeniiotcu WIWI tLtJV4UIflif .1.- U ly u"Miry nIIteC ubat. Xo VIRMstIV,

Stalford and Kuilback [12] established by means of an algorithm that noise-free static
black boxes representable by polynomials are identifiable with probability 1. The goal of
this report is to extend that investigation to static processes having uniformly distributed
nbc r-ntionnol eorrors

A precise statement of the problem under investigation is given in the next section.
A method of testing a candidate model for its probability of being the identity is pre-
sented in Section 3. The value of selectin2 random innut data is discussed in Section 4.
An adequacy criterion for modeling is described in Section 5. An algorithm for identifying
an adequate polynomial model of an unknown static process is established in Section 6.

2. PROBLEM STATEMENT

For any integer m, we let Rm denote an m-dimensional Euclidean space. Let the
integers mr and mo represent respectively the dimensions of the input and output vectors
of a black box. Let X be a compact subset of Rm'i, and let Y be a Borel-measurable sub-
set of R mo. The sets X and Y are the sets of all admissible inputs and possible outputs
respectively. Let ? denote the space of all essentially bounded Borel-measurable functions
with domain X and range in K Throughout this report we let Yf denote a subspace of 5.

Let e be a positive real number. For the purposes of this report, we define a black
box B to be a quadruple {X, f Y, E}, where f is an unknown member of !f. The mapping
f is the input-output relationship of the black box B, and it is termed the identity of B.
The number - represents the absolute bound on uniformly distributed observational errors.
Let such errors be denoted by n. This random variable satisfies hAq • e, where 1t4 is the
Euclidean norm of q in RmO,

T e O Ihe ouuavvawx'u ofi 4lUL L . ii-i flU a.: 4- .4 . 11I- U -i-J tI 4)3' X MI t'r L'i-

servations satisfy the equation

O(x) = fx) + (1)

for all inputs x E X.

The space 2 may seem too large a space of functions from which identities f
are permitted to belong, particularly when only elementary models of f are desirable.
Elementary models are those designed with elementary functions such as polynomials,
exponentials, etc. According to the Stone-Weierstrass theorem of analysis, a continuous
function can be approximated uniformly by polynomials, with arbitrary accuracy. By

2
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Lusin's theorem of measure theory, a Borel-measurable function is equal to a continuous
function except on a subset of X of arbitrarily small measure. Thus for any f contained
in A, we can approximate it arbitrarily close by a polynomial model if desired.

For f, g contained in A2, we make the definition f = g if and only if f and g are iden-
ti;cal almost everywhere. Thuis if f gthnf In i;ufe nasto oiie*latse.QIILJIJ V I3 IVWJC 1iUb LiI -t 5, t.J1tII I tUIJU 5 U1IIWM UII U btfU Ut. ~UiJL1iVBeaue

For the black box B = {Xt, f, Y, e, let P be a prior distribution on the space 5f of
candidate models. In the sequel, this a priori probability is denoted by P(f g), g EA

Problem. Let q denote a real number in (0, 1). Given a black box B = {X, f, Y, e}
with f E J and the a priori distribution P over X, find, by analyzing only a finite number
of observations, a model g C Y such that f = g with probability q.

A diagram of our problem is given in Fig. i. Randomly chosen inputs will be used
in resolving this problem. An asterisk is used as a superscript on an input variable to de-
note a randomly chosen input. It is tacitly assumed that members of a finite sequence of
randomly chosen inputs (x0, x, ... , x*} are independently generated. We assume un-
limited freedom in selecting the inputs from X.

97?

x 0(x)

0(x) - g(x)

Figure 1

We need the following notation. Let yo G RmO, and let r be a positive real number.
Tne closed ball centered at y0 with radius r is denoted by

B(yo, r) {y E RmO: iy - yoj < r4.

For a given measurable subset, say C, of RmO, we let v(C) denote the Lebesgue
measure of C.

3



HAROLD L. STALFORD

3. TESTING A CANDIDATE FOR THE IDENTITY

Let g be contained in f. We suppose that g(x), x E X, can be observed without
error. We seek a means of increasing our confidence in f = g above the a priori value
P(f = g). Let x* be an input, and consider the difference IEI(x*) - g(x*)I. If the differ-
ence is greater than E, then the model g is clearly not the identity f. On the other hand,
if it is less than or equal to e, then our confidence in g being the identity is enhanced.
Thep rlarnne nf anhnan-ment is the object of nthic seoonn

Let E denote the event that an input x results in the inequality

l0(x) - g()l < e (2)

being met. Write

A = {x E X If(x) -g(x)I < 2e}.

The event E cannot occur whenever x is not a member of A. For x E A the event E can
occur with the probability

P(Ejx) = (B(g(xt)e),f B(f(x),e))v (B (f(x), e))

For the case that mo 1, this equation reduces to

P(Elx) = 1- If(X) - g(x)l
2e

For a randomly chosen input x* the event E has the probability

P(E) = f P(Eix)Pt(x) dx

of occurring, where P is the probability density of choosing a random input. For a uni-
form density we have P,(x) = 1/jp(X) for all x E X, where ju4X) is the Lebesgue measure
of A. Conditioned on f ti g, the event E occurs with the probability

P(_Ef:g) = 1 f v(B(g(x), e) nf (fx), e)) dx
pA(X) JA o(B(f(X), e))

Note that P(Elf f g) < 1, since f # g implies that f and g differ on a set of positive
measure.

Theorem 1. If a random input results in the event E, then the probability that f = g
conditioned on the happening E is given by

4
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Pf=gE) = - P(f g)P(f = g) + [1 - P(f =g)] P(EIf + g)

Proof. The probability that f = g conditioned on E is given by the Bayes' formula as

P(f = E) = P(EIf = g)P(f = g)P(Elf = g)P(f = g) + P(f = g)P(Ejf 0 g)

If f = g, then A = X and P(EIx) 1 for all x E X; therefore P(EIf = g) = 1. The assertion
now follows since P(f * g) = 1 - P(f = g).

It follows from this theorem that

P(f = gIE) > P(f g)

whenever P(f = g) t 0 or 1. Thus our confidence in f = g is increased by the occurrence
of the event E.

If P(f = g) = 0.5, then

P~ffgE = 11E1 + P(E If g)

In the next section we investigate the use of administering randomly chosen inputs
over n stages.

4. SELECTING A SEQUENCE OF INPUT DATA

We call a test that operation of administering an input to the black box and to the
model, observing the output of each, and checking to see if the event E occurs. We let n
represent the length of a given series of tests.

Since f * g implies that f and g differ on a set of positive measure. it follows that
P(EIx*) < 1 unless f = g. Thus there is the positive probability I - P(Elx*) that the
event E does not occur whenever f t/ g. As a consequence, if x* is used as the test input
n consecutive times, then as n increases without bound we are sure to find out that f * g
when this actually is the case. This remark raises a question. Which method gives the
highest probability of f = g, conditioned on the event E occurring at each of n tests: the
method of administering different randomly chosen inputs for each test or the method of
applying the same randomly chosen input for all n tests? We establish in the proof of the
next theorem that the former method gives the highest probability.

Let Sd = lxr, A, ... , x*} denote a sequence of distinct (independent) randomly
chosen inputs. Let Ss = {x*, x*, ... , x*} denote the sequence of length n of the same
randomly chosen input x*. For i = 1, 2, ... , n, let Ei(Sd) denote the occurrence of the
event E for the input x* C Sd, and let Ei(S6) denote the occurrence of the event E for
the ith application of the input x$ C S,.

5
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HAROLD L. STALFORD

Theorem 2. For the sequences 3d and Ss of length n, we haue

P(f= g) -3)
P(f =g) + tl1- P(f =gyjP'NEl g)

P EJU ISd)I g) < Pf Ei(S)| * g)

Pf=g fl (Sd > )4= Cil Eis).

Proof. Since the random inputs of Sd are randomly and independently chosen, it

follows that ,

Pq I FiSX f:4 ) rP Ei Sd) If 9) =Pn (EJ f g).
/=1 1=1

This together with Theorem 1 gives Eq. (3).

The probability of the event

f i TE(Ss)

nnditinripA mnn _* -x E A is givin bv

\j= n 3 x),e) fl B(f@x) £)j
Pi " Ei(S)x = x I (B([() e))

V =I 3I / L J

Integrating over all x C X gives

P($C)Ei(Sjf* )= p( ) f [vB ((ef(x), ;)) f dx.

Applying the Hblder inequality of integration theory establishes that

6
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pn(E(f * g) < ( B1(Ss) f * ).

This expresses that there is a higher probability of finding out that f * g (when this is the
case) if distinct random inputs are used rather than if a single random input is used for
all tests. It follows from Theorem 1 that

n

P(f = g n Ej(Ss) = P(f= g)

PVf=g) + [1-P(f= g) 
i =1

From this equality, together with the previous inequality and Eq.
last inequality of Theorem 2 is met.

Ei (Ss) f g)

(3), it follows that the

For P(f = g) * 0 we have the corollary

lim Pf = n
Ii=l

Ei(Sd)) = 1.

A nrlflT T A flEY flflmrflVl- "mn .Mrnflr -a. ADLQUACIEi tnhirink iON FU l OLDUJLINU

The probability P(Elf * g) is the probability that the observed output e(x*) will be
within the error e of the output g(x*) of the model. For any x E X the value g(x) is
referred to as the predicted output of the black box. In the modeling of unknown sys-
tems, it is desirable to have a model with which the observations can be predicted within
an error of e. Let Ps denote the probability that the event £ occurs whenever some in-
put x"* is applied to the black box. Then P, = P(EIf # g). We call Ps the probability of
a successful test.

For n tests we write

PI1(n) = =gn Ejd

di= t 

We call PI (n) the probability of identification resulting from the occurrence of the event
E at each of n consecutive tests.

Our main equation, Eq. (3), can be rewritten as

Pf = g)
P(f = g) + [1 -P (f = g)J pn

7

PI (n) = (4)

-M



HAROLD L. STALFORD

In the modeling of a particular physical process, we cannot in general know with
probability 1 that a certain model is the identity of a black box. Rather, we must be
content with a model that has a Wgh nrohability of a suoresful tst and tha+ gives us a
high level of confidence in it being a replica of the black box.

For given values of P%, P(fz= g), and PI(n), Eq. (4) provides a criterion for testing the
adequacy of a certain model g. Suppose we desire a given value PS as the probability of
a successful test. Beginning with an initial confidence PQ g), we would like to increase
our confidence to the level Pj(n). The number of tests n necessary to provide the addi-
tional confidence is given by

l P~frg)
PI (n)

log g I_

that is, n is the solution of Eq. (4). For example, with (P%, P(f- g), Pj(n)) = (O99, O05,
0.95), we nave from Eq. tD) mat n =293 tests, if rtr =g) is increased to 0.8, then
n = 155. However, if P(f= g) is decreased to 0.2, then n = 431. In view of this we
make the following definition.

fixn-44n4ion 1 A nndol e nf a A1n1 hn^X iS, nrlnninta ,,iti rnaah ,,esIi the JDSI

P (f = g), FP(n)) provided the event E occurs at each of n tests, where n is given by Eq. (5).

Thus adequacy is a function of the probability of a successful test, an a priori con-
fidence in ,f = g. and an a Posteriori confidence in f = N. Note that n is an increasing
function of P, and P;(n) and is a decreasing function of P(f = g).

6. IDENTIFICATION ALGORITHM

In this section we present an algorithm for identifying a polynomial function of a
single variable. Afterwards, the vector case is discussed,

T -A C n .t.. LI.. _1_ __ -. _ .._ C I.__ r1 - c C tP 1net J UCllC'r tlb1 V1-$d UVi puiiUiiunil IUllUtUnls Ut UUC V4IdUit% rut l C J titr
P(f= g), a nonzero value, be the initial confidence in the polynomial model g E 5 being
the identity of a given black box (A, f, Y, e), where f E 5, X is compact in RI, and
Y = R1 . LetP Ps be a preset level for the probability of a successful test. Let Pj{n) >
-L = s j he " Ii e 6t & fl~flJoflt§C1 Lvqtaex ' aiiy Aii ISt g 5 , lj a.L r w iu tW w

struct an adequate model g, that is, one for which the event E occurs after each of n
tests, where n satisfies Eq. (5). Our goal is reached with the algorithm given below in
Theorem 3. First, we need some lemmas.

The following lemma establishes that a single Lipschitz constant K is satisfied by all
polynomials of degree less than m + 1 that satisfy compact constraints at m + 1 distinct
points.

8
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Lemma 1. Let m be any positive integer. Let X be a compact subset of R. For
i = 0, 1, 2, ... , m, let yj G X be distinct, and let Ii denote a compact interval of R1.
Then there exists an integer K such that

Jp(x) -p(y)I < Kjx - yl, x, y C X,

for all polynomials p of degree less than m + 1 satisfying

p (y;) EE li, i = O. I, 2, ... , m.

Proof. A polynomial p of degree less than m + 1 is represented by its m + 1 coef-
ficients_ i-e., a noint in R''+l. Let I be the Cartesian product of IL, i = O.1,2....,m.
I is a compact subset of R m+ . Define

LI Ym Yin ... YinJ

The matrix H is a mapping from the space dR"'1 of coefficients into the space Rm+1 of
values.

H is a nonsingular Van der Monde matrix [131. Thus the set IL1 [I] is a compact
subset of fli+l* This set represents the set of all polynomials of degree less than m + 1
that satisfy the compact intervral constraints Ii, i = 0, 1, 2, ... , m. Consider the map

G:HI11[I] XXC + BI
where

G~x,x) = E iaix"Ql x E AC,
1=1

and wvhcre C N -J~ is represetedU~AS by c ="O a1, al 2, + .... Th valu VOA, x' 10

the derivative at x of the polynomial represented by o<. Define

K=max {jGa, x)I: a e H-[I] , x EAX},

which exists since G is a continuous map with compact domain The mean-value theorem
establishes the assertion of the lemma.

In the next lemma we show how to construct an interval, say /, about f(x), x E ma,
such that if g(x) is set equal to any value in I, then the event E occurs with a probability
greater than Pe whenever x is the input.

9



HAROLD L. STALFORD

Lemma 2. Let x C X, and let the input x be administered T times, resulting in the
observations @j(x), j = 1, 2, ... , T. Let T be an integer large enough so that

%S8x)- ej(x) > 2eP%,

where

18(x) = max {Si(x):j 1, 2,., T}

and

01(x) = min {e(x):j = 1, 2, ... , Tt

If g(x) is chosen so that

es(x) - e < g(x) < jEUx) + E,

then'whenever the input x is administered the probability of the event E occurring is
greater than P8.

Proof. We want to show that

(1 - Ps)2e > I f(x) - g(x)I.

Since

£O-JZr- e fLxt C &lfx) + e-

it follows that

Ielx) + e - O(x) + ej > lf(x) - g(x)j.

The lemma follows since

(1 - P8 )2e > 2e - (e(x) - e0(:x)]

2e- -t x-e(x)] > 0.

Theorem 3. Let (X, f, Y, e) be a black box with f C i. Let the values PS nd P1 n)
be given. Let P be a prior distribution over i, Then a model g E Y can be constructed
such that g is an adequate model of f.

Proof (algorithm). Such a model is constructable by means of the following algo-
rithm. This algorithm consists of an iterative procedure of generating a candidate poly-
nomial and then of testing the candidate. The iterations are halted whenever a candidate
passes the test.

Before beginning the iterations, we generate an initial candidate po to be tested in
the first iteration.

10
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Let x4 be chosen randomly from X. Set yo = A. Throughout this proof, x and y
are used to denote inputs. Using Lemma 2 with x = yo, apply the input yo until the
inequality

e8(yo) - I(9Iyo) > 2ePs

is satisfied. Define

g(yO) 2 [e(yo) + eo)]

Let po be the constant polynomial with the value g(yo). Note that

A-fyo) - e C< po(y) < 0 3(y 0) + e.

Let m = 0, and proceed to the testing phase.

Testing. In general, m is a nonnegative integer. For i = 0, 1, 2, ... , m the values
g(yi) have been established for the inputs yi. We have a candidate polynomial pm of the
kth degree, 0 < k < m, such that

PM(Yi) - g(Y1 ), i = 0, 1, 2, ... , m.

Let n satisfy Eq. (5) for the probability P(f = pm). For j = 1, 2, ... , n, choose randomly
x* from X, and observe the output 9(x7*). If the constraint equations

Ie(xp) - P (X)l < e, j = 1, 2, ... , n,

are met, then the polynomial pm passes the test; set g = pm, and we are done. If not,
then let j1 be the smallest integer in f 1, 2, ... , n} such that

IO(xt) - P (xbi)I > E.

(Of course, if this inequality holds for some j1 < n, then x*, is never selected nor applied
X,i+

as an input.) Proceed to the modeling phase.

Modeling. Let Ym+l x*. Using Lemma 2 with x = Yn+l, apply the input ym+l
until the inequality

) J al -- @1(v C - 2P-

is satisfied. Define

g(Ym+in) =- [e&(Ym+1) + E1t(ym+l)J

Let p be the smallest integer in {k, k + 1, ... , m + 1} such that there is a polynomial
fm+j of the pth degree satisfying the constraint

11
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es(Y> - e < ftm+i(Yi) < e1(yi) + e (6)

for all i 0, 1, 2, ... , m + 1. (Recall that ftyj) satisfies the same set of constraints.) Of
all suchA polynomi-a'ls satisfyinr iquiity- ()i , let PM+r be one that 1udnini-laizes the fUInc-
tional

m+1

T sup {IPm+ujYi) - qj] :qi [s(y) - e, OJ(yi) + el!. (7)
i=O

We redefine

= , J-v;)

for all i = 0, 1, 2, ... , m + 1. Return to the testing phase.

Note that if p = m + 1, then

Pm+i(Yi) 1- e (s)(y) + PItYi

f- nil n - 1 1 n, x 1 fiPll.,, +r-nnn -n- a ,,nlnn naltnnvvda n
|-,j& al 0l - wJ, 1-, fls . . . > fls 4i . t alVti LO> ttk vA'.J1J I4'J1111FAJ '.t 

(m + 1)th degree passing through the midpoints of

te,(yp) - e, ed(yi) + e], i = O 1, ... m + 1.

The midpoints of these intervals give a minimum value to the functional (7).

Since the polynomial Pm+1 satisfies inequality (6) for all yi, i = 0, 1 2, ... , m + 1,
it follows from Lemma 2 that the event E occurs with a probability greater than P8 when-
ever any of the inputs yi, i = 0, 1, 2, ... , m + 1, are administered.

Let N be the degree of the polynomial f. Since the polynomial f satisfies the con-
straints of inequality (6) for all inputs y, it follows then from the definition of P that
p < N. The modeling phase, therefore, never produces a polynomial candidate whose
degree is greater than that of the black box. Each succeeding iteration produces a better
candidate in the sense that more constraint equations are satisfied. Before each modeling
phase, the old candidate Pm satisfies mn constraint equations. After the modeling, the new
C_ , , I c o,+I SausSca an at-lii-llal tAJ-*lot~al4ll

We now establish that the above iterative procedure terminates with probability I
as the number of iterations goes to infinity.

Let mn increase without bound. Let Z denote the nonnegative integers. Let {y1: I C 2)
be the set of inputs generated in the previous procedure. The probability is 1 that this set
is dense in X. For each member yj the constraints

s(Yi) - f < f(y1 ) < ep(Yi) + e (8)

12
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are satisfied. Using Eq. (1), note that

es(yi) = ftyi) + max [,Qj = 1, 2,..., Ti}

and

e1(yi) = f(yi) + min = 1, 2, ... ,

where n;J is the error in the observation obtained for the ith apnlication of the input y1.

Define

ai = max =7ij:J 1, 2, ... ,Ti

and

0 = min {fii:i = 1, 2, ... , Ti}.

191(yi) + 2e -®8(Yi) 2c + - ai. (9)
Let X > 0. For j 1, 2, ... , N + 1, there exists with probability 1 an integer i(j)

such that

2e + (J) - °) < X.

= max {i(j):j= 1, 2, ... ,N + 1}.

It follows from Lemma I that there is an integer K such that for all m > t1

IPm (XI) - Pm (X2)I1 < K [X1 - X21

and

If{X1 ) - f(X2 )1 < KJx1 - X21 (10)

for all X1 , X2 E X. Decompose X into a union of disjoint intervals XA,, k F 1, 2, ... ,

where J is some finite integer larger than N + 1, such that

K p((Xk) < N, (11)

where ,(Xis t ic +he lan"-t nf fl-t infa Vea Y* i-rVr noo, b = 1 '2 r +kara rnsto AVarN-where p* "'Kk, . e - -* U *.u.. L- LCA4-fll 11 -, L C 1 Waio -1 f - * ^ -0- ... i- VY klULl

probability 1) an integer i(k) such that Yi(k) C Xkz and

2e + gi(h) - ai(k) C < . (12)

Let

13
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t2 max i )k = 1, 2,...,JI.

Define t = max {t1, t23. From inequalities (6), (8), (9), and (12) it follows that

If(Y#(k)) - Pt(Yi(h))I < X. (13)

The inequalities (10), (11), and (13) together with the triangle inequality imply that

If (x) - pt(x) I < A (14)

for all x E X. With Pt as a model of f, we have from inequality (14) that

P(Elx) > 1 --
2e

for all x G X. Thus

P(Eif OPt) > 1 -

26

Since X > 0 was arbitrary, it follows that P(E If # Pt) converges to 1 as X converges
to zero. As a result, the probability of passing the testing phase goes to 1. Actually the
nnl,7rnnnFl ,, -. nnniraraoc cj f as m cn dnn +1n infini+'r, Thk nrnnlP+c +hen nrnn f the
theorem.

Consider the vector case where f is a polynomial function defined on X C Rmi and
has range in Rmo. For k = 1, 2, ... , mo, let fk denote the kth component of f, that is,
f = (fit f2, ... , fmo). Then fk is a polynomial function from X into R. Let a vector
x E X be denoted by its components (xI, X2, ... , xm). Let j E {1, 2, ... , mi}. By vary-
ing the argument xj and holding all other arguments of x fixed, the polynomial f(x, X 2,
... , xi-, 1+1, ... , XM ) can be estimated according to the previous algorithm. Conse-
quently fk can be estimated and therefore the identity f as well.

7. CONCLUSION

We have investigated the problem of identifying a black box whose input-output
relationship f represents a static process having uniformly distributed errors in the ob-
servations of the output. We have assumed unlimited freedom in selecting test inputs
from a compact subset of the input space. Identification of f is conducted bv comparing
the observations of the black box's output with that of a model. Bayes' formula is used
to derive an equation for the a posteriori probability of identification as a function of
a priori probability of identification, a probability of observing the output of the black
box within error bounds, and a number of conducted tests (all tests being successfully
passed).

We have defined a criterion for determining an adequate model of a black box. A
model is defined to be adequate if it passes a series of n tests, where n is a given function
of three quantities. Each test consists of administering randomly chosen inputs and ob-
serving the difference between the output of the black box and the output of the modeL

14
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The test is passed if the difference is less than the error bound of the noise. Sequences
of distinct random inputs are shown to provide more useful knowledge about a model
being adequate than are sequences of inputs in which an input appears more than once.
The integer n is an increasing function of the probability of a successful test and the
a posteriori probability of identification. That is, a more adequate model will satisfy
more tests.

WVe h14av eLtbCILtXU p dL idUenLltificaU 4tion VLIIli agrt Uo LCtArini-U rliL aii audeqjuate AlfL%.fAt o.1
a black box that is representable as a polynomial function of a single variable. The algo-
rithm consists of a procedure that iterates between a modeling phase and a testing phase.
The procedure is halted whenever an adequate model is obtained. A discussion is given
on generalizing the algorithm to handle vector-valued polynomials. This algorithm can be
used to construct an adequate model for black boxes in which f is an essentially bounded
Borel-measurable function, since polynomials approximate such functions within any
degree of accuracy.

REFERENCES

1. L.A. Zadeh, "On the Identification Problem," Trans. IRE CT-3, 277 (1956).

2. L.A. Zadeh, "From Circuit Theory to System Theory," Trans. IRE 50, 856 (1962).

3. P. Eykhoff, P.M. Van der Grinten, H. Kwakernaak, and B.P. Veltman, "Systems
Modelling and Identification," in Proceedings of the Third IFAC Congress, London,
20-25 June (1966).

4. P. Eykhoff, "Process Parameter and State Estimation," Automatica 4, 205 (1968).

5. M. Cuenod and A.P. Sage, "Comparison of Some Methods Used for Process Identifi-
cation," Automatica 4, 235 (1968).

6. A.V. Balakrishnan and V. Peterka, "Identification in Automatic Control Systems,"
Automatica 5, 817 (1969).

7. K.J. Xstr6m and P. Eykhoff, "System Identification - a Survey," Automatica 7, 123
(1971).

8. P. Eykhoff, Identification and System Parameter Estimation, Part 1 and 2, North-
Holland, N. Y. (1973).

9. P. Eykhoff, System Identification: Parameter and State Estimation, Wiley and Sons,
N. Y. (1974).

10. H. Stalford and G. Leitmann, "On Representing a Black Box as a Dynamical System,"
J. Math. Anal. AppI. 38, 348 (1972).

11. E. Mark Gold, "System Identification via State Characterization," Automatica 8, 621
(1972).

12. H. Stalford and J. Kullback, "Identifying an Unknown Process by Using Randomly
Chosen Inputs," Information and Control 23, 393 (1973).

13. 0. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, Princeton,
1958 p. 94.

15


